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. ' Abstract

The problem of determining a shaping filter for nonstationary
colored noise is consideped. The shaping filtér transforms white
noise into a possibly nonstationary random process (having no white
noise component) with a specified autocorrelation function. A set

of conditions to be satisfied by an autocorrelation function leads

to the determination of a shaping filter, The shaping filter co-

efficients are simply related to the solution'of a matrix Riccati
equation. In order to formulate the Riccati equation, basic re-
sults concerning the mean-square differentiability of a random
process are developed. If the Riécati equation.is'undefined, an

autonomous (zero-inﬁut) shapihg filter may easily be determined.
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. IR Introduction
It is often convenient to model a.random ?rocess as the result
of a linear filteringvoperation dn stationary ﬁhite noise. Such a
-representétion has proved inyaluablé when applied to many signal
prOCeésing éroblems,_especially those associated with the theory of
filtering and estimation of random signals [1-6]. In éﬁch applica-
. tions thé,gi&enyrandom»signal or process‘ié frequently specified
only by its autocorrelation function, Porkexample, optimal estima-
tion problems involving a minimum mean-square error criterion in-
variaﬁly may be stated in térms of appropriate autocorrelation and

cross-correlations of given random variables or processes [7]. In

such cases, the statistical déscription-of a random process given
solely in terms of its second-order propérties, i.,e,, its auto-
"'~corre1atidn"function,“clearly suffices for the purpose of solving
:_the estimation problem,
‘A more physical description of a random process with a given
| autoéorrelation'function employs a linear»system callied a shaping
filter, which transforms*stationary white noise into a process
' having.the given autocorrelation function, By introducing shaping
filters, great simplicity has been achieved in the forﬁulation and
solution of many estimation, filtering, and prediction problems.
Wiener [1] used the shaping filter concept implicitly, and more re-
cently ﬁarlington [9], Xalman and Bucy [61, and others used it ex-
plicitly. Clearly; in brder to understénd the generality of the

‘limitations of a shaping filter description of a random process,
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one must investigate the possibility of transforming a statistical

description of the process into a shaping filter description. The

' so-called factorization problem, concerned with determining a shap-

ing filter from a given autocorrelation function, is the primary

subject of the present investigation.

e
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- For stationary random processes, the faéto?ization problem

has weli-known freduency dormain solutions. General solutions are

given by Wiener [1],and Doobt8],,and solutions for the case of a

rational power séectrél density are given by Wiener [1l], and Bode

and Shannon [2].. In the latter case, the shaping filters may be

realized by %he intefconnection,of a finite number of lumped

elements, For pﬁrposes of simulation or cémputation, the latter

~ case has considefable bractical significance.

If the givén autocorrelation function corresponds to a non-
stationary random process, the factorizatidn problem becomés par-
ticularly interesting and challenging. Although previous investi-
gations of the noﬁ;tationary facforiiation problem have met Qith
-varying degrees of success, the problem has not been solved in
_general, A common assumption among these investigations, as well
as the present one,vis that the random processes under considera-
tion are nonstationary anélogues of those considered by Bodeland
Shaennon. In other words, a shaping filter is represented either
by a single linear differential equation of order n, or more
generally, by é set of fifst—order linear differential equations
in "state-variable" form with time-varying coefficients. In the
treatment below, it will be assumed additionally that the shaping
filter does not have a direct connection from input to output.
This assumption means that the output random process is well be-
haved in the sense that it contains no white noise component,
Thus the results are applicable specifically to sfate estimation

problems with colored measurement noise.




e~

SN

. Anmong the first and most significant contributions to the
solution of the factorization problem is thét of Darlington [9].
Darlington assumed the existence of a single n-th order différen—
tial equation model for the shaping filter, Using the algebra of
ti@e-varying differential operatoré_ and a method analogous to that
embloyed by Bode and Shannon, he exhibited global solutions of the
factofizatioh problem, provided that the time variations involved
were Suitably defined and restricted. The coefficients of the
shaping filter may be obtained from the solutions of a related linear

differential equation. .

Batkov [10], at about the same time as Darlington, proposed an

- —~

-algebraic solution of the factorization problem. However, accord-
~ing to Stear [11], Batkov's method fails except in certain special

cases., R. P. Webb,‘gg al, [12], considered a state-variable solu-

tion of the problem. Their solution too appears to be invalid ex-
cept in special cases, -

Other relevant investigations are those of Kalman [13], Stear
[ll],.and Anderson [14], and are concerned with state-variable
fgrmulations. .Although iélman did not solve the factorization
problem, he was able to establish a formal definition of the problem,
Tﬁe results of Sfear and Anderson, although derived by different
methods, are similar and appear to provide a significant first
step in demonstrating the existence of a factorization for the
general nonstationary case,

The present investigation may be regarded as an attempt to

develop a realizability theory for shaping filters having a state-
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variable representation, Conditions are developed which, if

satisfied by an autocorrelation function, guarantee that a shaping

filter may be determined,

Problem Formulation

The class of shaping filters to be considered includes those

which may be repfesented by the set of linear differential equations*

X(t) = B(E) u(t)

I

(1)

1

: t
y(t) = ¢7(t) x(t)
The input u(t) is a scalar representing a zero mean white noise

process, so that

E[u(t)'u(%)] = §(t -~ 7).

The state x(t) is an n-vector and the output y(t) a scalar. The

coefficiente é(t) and B(t) are real-valued n-vectors. We assume

-that the shaping filter cbrrespbnding to_(l) is causal, i.e,, non-

- anticipative. The representation (1) is completely general in the

sense that any set of differential equations in "state-variable"

. form may be transformed to (1) by a suitable change of coordinates.

" Although the absence of aAfeedback matrix in (1) may make this form

unsuiltable for practical simulation, the theory~of equivalent sys-
tems [15] is sufficiently developed to indicate when the above
systeﬁ has an equivalent but practical realization.

In what follows, it should be assumed that the initial value of

the state variable Xy = x(to) is derived from a zero-mean random

The superscript, t will be used to denote matrix transposition
and the symbol z(t) the first derivative of z(t). -When the con-
text is clear, the explicit dependence of a function on its
argument .will be suppressed.

RO "I P
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Qgriable ﬁncorrelated with the white noise inéut u(t); The output
y(t) is then a real-valued, zero-mean random process with autocor-
relétion functibn ' o
r(t,t) = ELly(t)y(r)]. . (2)
“For purposes of analysis; one méy caléulate r(t,7) in terms
of the coefficients.¢(t) and 8(t) in a straightforward way. In

terms of a matrix M(t) &efined by

t
MCt) = B x 51 + [ soostooan, &
. £
the autocorrelation function is _
T n(t,T) = g (EM(TIS(T) , © (42)

for t > 7. For & > t, the above development may be répeated t§
yield

r(t,T) = ¢TCEM(EI(T) . ¢4b)
Thus, combining (4a) and (4b),.we have . ' |

r(t,m) = ¢ (tMImin(t,w)] ¢() (5)

- One may easily verify that the matrix M(t) is the covariance
. matrix of the state vector, i.e.,

MImin(t,t)] = Elx(t)x"()1, (6)
where x(t) is the state vector of the sﬁaping filter, The salient
propertieé of M(t) are stated in the following Lemma, which generalizes
a result of Doob th].
Lemma 1. Let a éovariance matrix M be defined as in equation (6).
Then M is symmetric and

(a) M(t) >0, for all t

(b) M(tz) - M(tl) >0, for all t2'2 ti.

L3

For real symmetric matrices R -and B, the matrix inequality
A > B means that the matrix (A-B) is non-negative definite.
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Proof: That M(t) 2 0 and is syﬁmetric follows by inspectibn of

" (6). Part (b) is established as follows:

(o]
A

EDx(t,) - x(t)I[x(t,) - x(tl)Jt

1}

E(x(tl)xt(tl)] + s[x(tQ)xt(tQ)] - Efx(tl)xt(tQ)] - E[x(t2)xt(tl)]

)

M(t2) - M(t,).

The last equality follows from (6).

—

Note that M(t) as defined by equation (3) is differentiable, so

that from the Lemma, ﬁ(t) z 0.

. Definition 1. A symmetric, differentiable, real-valued matrix

M(t) will be called admissible if M(t) is nbn—negative definite

and non-decreasing.

fﬁe development aboVé'makes clear that admissible matrices
will play a crucial role in what follows. According to (5), the
function r(t,T) bears a simple relation to the state variance
matrix M(t). This relation is used in the following Theorém, in

which several important properties of r(t,7) are derived.
Theorem 1.¥ Let the relation

r(t,7) = $5(t)MImin (£,7)16(T) ,

* Theorems 1,3, and 5 were stated without proof in [22].
& .
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where M(t) is en admissible matrix, define a function r(t,7T). Then

Al.

A2,

and

A3,

Proof:

» v(t,7) satisfies the following:

r(t,7) is separable; i.e., there exist real-valued vectors

#(t) and Y(t) such that

, ¢t(t)Y(T), for t =1
r(t,7) = . ' (7)
¢t(T)Y(t), for t <7

3

r(t,T) is symmetric; i.e.,

r(E;T) = rkT,t) s

r(t,7) is non-negative definite; i.e., for any choice of

instants t, = t, = ... L for any choice of scalars

@y Ooy oo @ , and for any finite integer m, the following

" -quadratic form is nonnegative:

m om '
= 2
Q Z z ozir(ti,tj) afj 0.
i=l j=1 ‘ . i

The first assertion follows by equating

Symmetry is apparent by inspection of (5). In order to prove the

third assertion, define matrices A, 4,, ... A as |

1’ 72
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>
I

M(ty) 2 0

>
!

= M(t,) -~ M(t, 1) 20, for k=2, ... m .

3
H
i

Then { Q becomes

m m m
-y Y t
Q=) . z @, o} (ti) Ak ¢(tj) ozj
k=1 i=k j=k : ,
m m -
=L b s faen o,
k= i=k

where ||| denotes the Euclidean norm, and Ai/Q a real-valued square-

root matrix of 4.

‘It is well known [17] that én arbitrary function r(t,T) is an
autocprrelation function if and only if r(t,t) satisfies A2 and
A3 of:fhe above Theorem. Al reflects the fact that the shaping
filter has a finite-dimensional state space. We assume henceforth
that p(t,t) satisfies Al-A3.

In order that a shaping filter corresponding fo r(t,T) exists,
it is necessary and sufficient that (5) be satisfied for some ad-
missible matrix M(t) for which rank ﬁ(t) <= 1. Negessity has already

been demonstrated in the calculation leading to (5). To prove
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sufficiency, note that the shaping filter coefficient B(t) may be
determined from M since BBt =M . A random initial value of the
state at t:to may be chosen from an ensemble for which

t -
E[X(t )X7(E )T = M(t ).

Since r(t,T) satisfies Al, we may equate

Y(t) = M(t) 8(t) ‘ (8)

to within a constant linear transformation taken as identity
for convenience. Eqdétion (8) may be regarded as the basic
equation to which an admissible matrix solution M(t) must be

sought in order to obtain the desired shaping filter.

“The Derivative of a Random Process

Some new results concerning the existence of a derivative of
a random process will be presented in this section. These results
are pertinent because a parameter defined shortly associated with

differentiability of the process is used in determining the coeffi-

‘cients of the shaping filter.

The concept of mean-square differentiation is defined below.

Definition 2. Let.y(t) be a random process for which E[yQ(t)] <®

‘for all t in T, an interval of interest. The process y{t) has a

derivative in the mean-square sense, denoted by y(t) or y(l)(t),

.at a point t in T if
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l.i.m. Y('C-l—h) — y<t) =
" : h-20 h

yeey

where t+h 1is ih T, and 1.i.m. denotes 1imit in the mean square sense,

Forbbrevity,,the,process‘§(t) will simply be called the derivative of

y(t). | | |
%A_well4known conditioﬁ for the existence of a derivative of a

randbm process is‘stated in the following Theorem. The proof, due to

Loeve fl?j is omitted.

Theorem 2. y(t) has a derivative at t in T if and only if the

function

a2

otoT

r(t,T)

exists and is finite at the point (t,t).

Theorem 2 is gene?ally difficult to apply. We derive below a
~‘more'easiiy-applicable differentiation criterion. Assume that the
“vectors ¢ and ¥ given in Al are continuously differentiable, and
define a function

a2 = o5t v(®) - 6% . (9

This eéxpression may be rewritten as

d 2¢t) = Lim sCeIveE) - y(e)d - [a(e’) - #() 15 yeo)

i ,O -t e - ¢ .

= 14 (FCETLE') - w(E',E) - n(E,ET) + r(E,E)
t'-t R

. Ellyeet) - ()32 |
- %3Tt t! -t =0 (10)
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The following Theorem establishes the differentiation criterion.

Theorem 3. Let y(t) be a random‘process'having an autocorrelation
function satisfying Al- A3 and let d_°(t) be defined by (9). Then

y(t) is differentiable at a point t ifvahd only if doz(t) = 0.

Proof. To prove the "only if' part, note that if y{t) exists, then

2
.2 Yy -
E[52(t)] = 1im BEQCED) WD) 1 <o
: 't (' - )
from Theorem 2, and from (10) it is clear that do2(t) = 0. To prove
the "if" part consider the continuous function g%r(t,T) with t fixed

and T varying. From Al,

~~ ét(t) Y(T) for t>n
WE%T(t,T) =

1s5(m) v for t <.

‘If"déz(t) = 0, then %%-rtt,f) is a contintous function of 7
at the point T = t. Since the functions ¢(t) amd y{t) afe éon—,
tinuously differentiablg, the function g% r(t,T)-has both a left-
hand and right-hand deri&ative with respect to T at the point
% = t. These derivatives are equal and their common value is

1im 82

2. ___.t .. ©
TE 3tar ?(L,T) =¢ () Y(t) <=,

Then from Theorem 2, y(t) exists.
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Theorem 3 has an important corollary which will be used in the
sequel. This corollary requires index functions di(t) to be defined
as follows:

200y = ¢(0E(ry YOy - Ty y( Dy T (11)

L

d

Corollary 1. Let the functions ¢ and Yy possess at least Kk

continuous derivatives. Then a random process y(t) has a k-th

derivative y(k)(t) at a point t if and only if the functions dg(t),

di(t), cee i_l(t) are all zero at t. In addition, if k4l deriva-

tives of ¢ and Yy exist, thus allowing di(t) to be defined, the

inequality di(t) 2 0 is valid at the point t. Finally,
.o N (i+3)
|y v ] = S5 r(t,m)  forall 0<i,j<k.

: ot™ ot y ,

Proof. The first and second assertions follow from the previous

“theorems and by induction on k. The last assertion follows from a

Theoren of Loeve ([171, p. 471).

We shall assume for the remainder of the paper that r(t,T)

satisfies the hypotheses of the above Corollary as well as Al-A3

1
L}

of Theorem 1; that is, r(t,7) satisfies:
A4, The given functions ¢(t) and y(t) possess at least k+l

continuous derivatives on T, the interval of interest.

A5, di(t) =0 forall t in T and for 0 < i <k-1, and

d (t) #0 for all t in T.

L4

“ The k-th d
£

rivative of a random process or function f(t) is de-
noted by

?k)(t).

e vt et e e e < 4 g e



Furthermore, T is to be considered an open interval so that desired

-

derivatives will'éxist at interior points of T.

As a notaticnal convenience we shall define the following .
matrices:
a(i+j)

- - o{t,T) s
att ot

(ol -

T=t

i

SORIDAIOREANC

6o,

v 2 Y @],

o = [y v

and

¥ (0) = co1] o), yPoy, -0 v )],

The previous Corollary implies that Rk~is symmetric, non-negative

definite, and that

- €] .ttt ,
Ry = E[Yk N l=h T = (12)

An important property, to be used shortly, is that Rk(t) is non-

singular. We establish this result by using the following Lemma.

Lemma 2. Let r(t,T) satisfy A1-A3 with ¢ and Y m+l times

differentiable., If dm?(tl) >0 for some t, in T and diz(t} =0

1
for 0 £1i<m1and for t in a neighborhood containing'tl, then
>
r(tl,tl) 0.
Proof. The Lemma is proved by contradiction. Let r(tl,tl) =0,

A3 implies r(t,tl) = r(tl,t) =0 for all t in T. Therefore

|

i i )
d . d ‘
-3 I‘(t,-tl) = I I‘(tl,t) =0,
Y dt dt
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- the result at t = @l yields
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' =(1) (1)
o5 veep 7 = [o%cep v ] =0 (13)
for all t in T. For the case m = 0, (13) implies do2(tl) = 0,
For the case m = 1, the equality
$5(t) Y(©) = ot (t) Y(E) |
may be differentiated to yiéld ?
8Pty o) = o) YP (o) (14)

for t in a neighborhood of'tl. Differentiating (14) and'evaluating

e I .
e veep ] 0Pt P

L
= oMy ¥ e + [0t v

which implies from (13) and (11) that dfz(tl) = 0. The case for

general m is proved in a straightforward way using the preceding

differentiation argument.

We now show that R, is nonsinguliar.

Theorem 4. Let r(t,t) satisfy A1-A5 on the cpen interval T. Then

the matrix Rk is positive definite everywhere in T.

Proof. Assume that is singular at "t = t,. Then for some 1 <k
froot 1ngt 1 § >

and for some set of scalars 8y *°tdy with a, # 0 the random process

L3




-
z(t) defined as
" ‘ ,
2(t) = ) a, v
i=0 |

vanishes at t = ty with probability one. Define E(t,?) as r(t,t) =

Elz(t) z(7)], which satisfies the hypotheses of Lemma 2 with m=k-4.

But from Lemma 2

a2m+1 a2m+1

B .2 .2
0= S gt T - Sy 1) =2y 9 (5,

t=T‘—“tl |

which implies a, = 0, a contradiction. Hence RK is nonsingular and

from (12) positive &efinite’everywhere in T.

Derivation of a Shdping Filter

' We shall use the results of the previous section to determine an
~admissible solution M(t) of the basic equation (8). The'following
Theorem shows that M(E) may be obtained as a solution of a matrix
Riccati equation.

ots

Theorem_§;‘ Let r(t,T) sé%isfy conditions Al-A5. Then the following

~ assertions are valid,

(i) If v(t) = M(t) ¢(t) on T, where M(t) is symmetric and the
rank of ﬁ(t) < 1, then M(t) satisfies the followingiRiccati
differential equation:

(k+1) _ M¢(k+l))(g(k+l) _ Mé(k+l))t - (15
dk ,

) Although derived independently, the methods used to ‘obtain the results
stated in Theorem 5 are essentially the same as those employed by
Anderscen [14], who cbtained similar results for tre special case k = 0,

it = O
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(ii) Let MO be any symmetric non-negative definite matrix
which satisfies

L(E) =M & (c) . (16?

for some to in the open interval T. If M(t) is the
solution of equation (15) having the initial value

M(to) = Mo’ then M(t) is admissible and Tk(t) = M(f)vék(t)
for all ¢ > €, in a neighborhood of t_. Purthermofe,

the coefficient B(t) may be -evaluated as

' (k+1) ey (KAL)
B(t) = Y (E) - M(E) ¢ (£)
g, (t)

(17)

Proof, Part (i) is proved by induction. By assumption Y = Mg and
M =’BBt where B is an n-vector. Assume Y(l) = M¢(ll Differentiat-~

- -ing this expression and'prekmultiplying by ¢(l)t yields
p(E () | G (DT (E41) | [4(E)E 8]2 .

Butf¢(i+l)t y(3) o (0T g (1) _ (DT gy (E+1)
and Y(i+l) =M ¢<i+l). Thus, by induction, Y(i} =M ¢(i)_for

0< i<k, For i =k we have from the preceding argument

Y(k+l) - M ¢(k+~1) + B dk

or
- (Y(k+l)»_ w Gy g

Post-multiplying this expression by its transpose yields the desired
. Riccati equation.

é

LS

. Hence ¢(i)t B =4d.
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The assertion in part (ii) will be proved by exhibiting a

homogeneous linear differential equation, the soluticn of which is
ger s

'a vector of dimension n(k+l) which has as components the columns

. ) ™ - N
of the matrix I h_ék'
Consider the right member the following identity:

d - - ey
a;c-(lk-M@k)_(l“k Me)-M 2 .

Substituting equation (15) for ﬁ yields
(Y(kfl) - u ¢(k+l))(Y(k+-l)t 5 _ ¢(1.<+l)t

(T, - M &)

M ék)

W

2%
a°

If the quantity ¢(k+l)t Tk is added and subtracted in the right-most

parentheses, the following expression results:

»)

(YO _ g (1)) (k1) g -p&HIE T + ¢(k+1)t(rk ~M3

a’

(I - Md) -

Let ey represent the (k+l)-dimensional unit vector with unity in the

(k+1)-st position and zero elsewhere. Then the last expressicn becomes.

(k+1)t _
. ¢ (T, -4 8
(T, - 2) - (y () gy g Gal)y ef+ k

"

)
2 b

which may be expanded as

_ (Y(k+l) oM ¢(k+l)) ef:]

1l
~

I—J .
e

!

=

1541
=

d
ETe VR LW

(k+1) _ (k+1), . (k41)¢t .
(y M @52 ) (1‘-1< - M q,k) . (18)

dk . T
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Define a matrix A as

} "= (Y(k+l)__ M¢(k+l)) ¢k+l)t
'1 B 2 ~

dk

2

and let i denote the i-th column of the matrix Fk - Mék. From

the standard existence theorem for ordinary differential equations
[18], the matrix A defined in terms of M exists in a neighbor-
hood of the point f = to. In terms of A and a4 (18) may be re-

written as the following set of differential equations.

-Aqo + ql

ol
i

9 = A9 + 9

- (19)
5 q = Ra + 4,
i . ;

q = Roy

According to the hypothesis of the Theorem, the initial condition
for (19) is qi(to) = 0, Since (19) is linear, it has the unique
solution qi(t) = 0 for all t din the neighborhood of to for which

the matrix M(t) exists and for 211 0 < i <k ,




e

The e trdix M(t) dis admissable because MO is non-negative
definite and‘symmetric, and ﬁ may be expressed as an outef product
BBt; where B, from (17), is real-valued.

E Therefore, the matrix M(t), obtéined as a solution of the
Ricéati equation, satisfies the basic equation (8). The coeffi-
cient vector B is evaluated from (17). In order to complete the
description of the shaping filter, the existence of an initial
covariance matrix Mo satisfying (16) must be verified.

Let 4, be any covariance matrix satisfying AOQk(tO) = 0.

Such a & always exists. From Theorem 4 R, (t)) is nonsingular. Let
M =T e R Tee ey + A L | (20)
o k7o Rk o”"k*0o” " "o °

Matrix M_ so defined certainly satisfies (16). loreover it is

easy to show, as was done in [19], that any matrix MO satisfying
| ] IS | t

(162 ?ay be expressed as in (20). Therefore Fk(LO)Rk (to)Fk(tO)

is the smallest matrix (in terms of the associated. quadratic form)

’ sat}sfying (16).

i
[

" Theorem 5 states thet the covariance of the state variable
of a shaping filter must satisfy the Riccati equation (15). Con-
versely, any solution of (15) with initial value satisfying (16)
yields a shaping filter corresponding to the given autocorrelation
function. Hence the equations (15) and (17) provide a prescription

for determining the shaping filter cosfficients.
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However, solutions of (15) are guaranteed to exist only iﬁ a
local neighborhood of the initial time - It is possible that a
solution of (15) may become unbounded at a finite time ty > €.
Clearly, such a solution yields a shaping filter defined only in

the finite interval to <t < tl . This phenomenon is examined in

_the following_example.

Let
4 -~|t-7 5 -2{t-7
I‘(’C,T):= 3 e l | 7} l { ) (21)
and let -
— -
4 t -t
3 e e
Y(t) = A and ¢(t) = .
o2 G2t e 2t
12

t

In this example, n=2 so that matrix M(t) has order 2. However, by
regarding the basic equation (8) as a linear constraint on M(t),
equation (15) may be transformed into a scalar equation of the
Riccati type. The new equation may be solved for the scalar

ate

Ms(t), the (2,2) element of the matrix M(t).n The scalar Ricatti

ol

* In the general case the Riccati equation (15), of crder n, may
be reduced to one of order n-k-1, [19]. :

i
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equation corresponding to (21) is
: 2
5 e2t

ﬁé(t) = (3 " - w0 e“Qt) . |  22)

The general solution of (22), illustrated in Pigure 1, is

o5 4t 1.(Ms(0) - 25/4) .10t

¢ Tz M_(0) - 1/4 |
M (E) = H_(0) - 25/% or | | (23)
1 - W_(0) - 1/4 ) e’

for to =0. If MS(O) > 25/4, the deriominator of (23) will vanish

at a finite time ﬁl > 0 so that Ms(t) will be unbounded as t

'approaches-tl. If MS(O) < 25/4, then Ms(t) is well behaved.

Two solutions of (22) are of special interest. The solution

25 &t/a

i

Msl(t)

corresponds to M_,(0) = 25/4. The solution

MSQ(t) = e4t/4A

corresponds to MSQ(O) = 1/4, Evidently from (23),

e
Lim M_(t) = e /4

e | ‘



for all MS(O) < 25/4, Therefore the solution qu(t) is unstable
in the sense of Liapunov and représents a separatrix, and the
soiution Msz(t) is asymptotically stable. Note that since (21)

.

corresponds to a stationary random process, shaping filters may

4

-
-

also be determined by the method of Bode and Sharmon [27], which
yields the following two transfer functions for time-invariant

shaping filters:

’ _ s-3
Hl(s) T (s+1l)(s+42) ?

and

o1 _ S+3
4H2(S) T (s+l)(s+2) °

These transfer functions correspond to the speciallsolutions
Msl(t)'and Msz(t) reépegtively. Thus the fime—domain solution
fortMs(t) shown in Figure 1 reveal special properties of the
classical frequency—doméin solution for the transfer function
H(s‘.

The finite escape time phenomenon illustrated in Figure 1
appears to be characteristic of problems involving a Riccati
equation. Some recent works of Bucy [20] and Mcore and

Anderson [21] report sufficient conditions for solutions of a

Riccati equation to be well defined in the future.
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A Singular Case

The definition of the Riccati equation in the previous section
requires that for some integer k, d, (t) #0 for all t din T. How-
ever a shaping filter may be determined in cases for which no such
integer exists. We show here that if di(t) =0 on T for
0 =i = n-1, then the basic equation (8) is satisfied by a constant
matrix M on a subinterval T' of T,

Suppose di(t) =0onT for 0=1=<n-1. Then tﬁe random
,proéess y(t) is at least n times differentiable. (from Theorem 3

and its Corollary) and the matrices Ri(t) exist for 0 = i = n .

For some t in Tj-redefine the integer k as
rank Rn(t) = k4l .

Note that k+1 < n-1. Since Rn(t) is continuous by assumption,
rank Rk(t) = rank Rk+l(t) = k+1 for all t in T', a subinterval

~

of T. The main result of this section follows.

Theorem 6. Let r(t,r) satisfy Al-A4, let rank R (t) =
rank Rk+l(t) =k+1l for all t in T', and assume that the comﬁonent
functions ¢l(t), .o ¢n(t) are linearly independent on T'. Define

M(t) as

M(E) = Ty (8) RH(E) Tp(e)

!
for t in T'. Then M(%t) is admissible and therefore determines

. :
a shaping filter for r(t,7).




Proof. Since Rk(t) and Rk+l(t) both have rank k+1 on T', then

k4l - . o .
y( )(t) may be expressed as a linear combination of the processes
i , . . . . s . .
y( )(t), where 0 £ i sk, for t din T'. This iinear combination

e

may ;b

expressed as

Y, (6) = A(E) Y (8) | (24)

for some matrix A(t). Post-multiplying by Y;(T) and taking the

expectation of the result yields

-

. g%'Rk(t,T) = A(t) R (t,7) , ' (25)
where
R (£, = LY, (t) Y(M)T . (26)

i

Traﬂsposing (25) and notingAthat

t

i Rk(t,T) = Rk(T,t)

yields

= R (t,7) = R (t,7) A°(7) . (27)

ot
rt

* The definition of{Rk(t) in (12) coincides with_Rk(t}T) defined

by (26), for T = t.
2
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g
For ¢t > 7 ,
(t,7) = 8(t) I ()
- R (%, % k(7)o
and from equation (27)
( | o
37 R(E,m) = (6 T(7) = & (t) T, (7) AT() . (28)
Since the functions ¢l(t), cres ¢n(t) are linearly independent
on T' by assumptioﬁ; (28) yields
. - . .
Ty =T B . (29)
Define M(t) as
_ -1 |
M(t) =T, (t) R (t) T, (1) . (30)

Clearly, M(t) is defined for all t in T'. From the proof of

Theorem 5, M(t) is a covariance matrix and satisfies
' = M(t) &
L (t) = M(t) & (t)

for all t in T'. 1In order to show that M(t) is admissible, it
must be established that M(t) is non-decreasing. We show below that
M(t) is constant for t in T', and is therefore non-decreasing.

L
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Differentiating (30) yields

1t
Iy . (31)

- 1ol A sl ot -
M=-T) RRTRRT I+ TR ™I+ TRy

However, the derivative Rk(t) may be expressed as

R, (t)

d 3 3 |
——-R](t,t) = t,T) + x= (t,7)
dt | ot gk( =t o7 Rk Tt

A(E) R(E) + R (€) Aty . - (32)
Substituting (29) and (32) into (31) yields

. ~’ -1 -1 ..t -1 t_ -1 -t A= Lt -1 t _
M = _kak ‘ARkRk r "'FkRk RkA Rk Fk + IkA Rk Fk + I‘kRk AFk =0,

for all t in T'. Therefore M is an admissible matrix and

r(t,7) may be expressed as

2(E,7) = #5e) M éer)

Since M is constant, the shaping filter has the form

cr




Pamma

where the initiai state X5 is a random variable with covariance
matrix M defined by equation (30), and x(t) = X Furthermore,
since the rank of M is k+l, the shaping.filter may be reduced to
one of order k+l. The assumption in the above Theorem that the
functions ¢i(t) are linearly independent is not restrictive since
if it is not satisfied the separation of r(t,7) in Al may be re-
duced to one of lower order by forming appropriate linear combi-
nations of the functions ¢i(t). These linear combinations. will
then be linearly independent on T'.

Note finally that the class of autocorrelation functions to
which Theorem 6 applies corresponds to random processes which may -

be represented by a truncated Karhunen-Loeve expansion.
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Conclusion

This investigation was concerned with the synthesis of
shaping filters corresponding to separable and differentiable
autocorrelation functions. The determination of a shaping filter
is basad on a set of conditions (Al-A5) to be satisfied by the
autocorrelation function. If the conditions are satisfied, real-
valiied coefficients of the shaping filter may be determined by
solving a matrix Riccati differential equation of ofder no
greater than the order of the shaping filter. If the Riccati
equation cannot be defined anywhere on an interval, then an
autonomousAshaping_filter may be determined on the interval
instead.

In order to formulate the Riccati equation, it was necessary
to develop and prove results concerning the mean square differ-
entiability of a random process. The results are thus applicable
to autocorrelation functions cofresponding to "colored noise",
i.e.,-pbssibly nonstationéry random processes which do nof contain

white noise as a component.




—

31

References

1, N. Wiener, Extrapolation, Interpolation, ancd Smoothing of

iStationary Time Series, Cambridge, Mass. : J. Wiley, 1949,

2. ;H. W. Bode and C., E. Shanncn, "A Simplified Derivation of
Linear Least Square Smoothing and prediction Theory,"”
Proc. I.R.E., vol. 38, pp. 417-425, Rpril 1950.

3. X. S. Miller and L. A. Zadeh, "Solution of an Integral Equation

Occurring in the Theories of Prediction and Detection," I.R.E.

Trans. on Information Theory, vol, IT-2, pp. 72-75, June 1955,

4. L. A. Zadeh, "Time-Varying Networks, I," Proc. I.R.E., vol. 49,

pp. 1488-1502, October 1961.

5. .S. Darlington, "Linear Least Squares Smoothing and Prediction,
with Applications,” B.S.T.J., vol. 37, pp. 1221-1294,
September 1958,

6. R. E., Kalman and R. S. Bucy, "New Results in Linear Filtering

"and Prediction Theory," Journal of Basic Enginesring, vol. 83,
{
|

pp. 95-108, March 1961.

7. R. Deutsch, Estimation Theory, Englewood Cliffs, N.J. :
Prentice-Hall, 1965,

8. J. L. Doob, Stochastic Processes, New York: J. Wiley, 1953,

9. S. Darlington, "Nonstationary Smoothing and Pradiction Using

Network Theory Concepts," I.R.E. Trans. on Circuit Theory,

vol., CT-6, pp. 1-13, May 1959.




32

10. A. M., Batkov, "Generalization of the Shaping Filter Method to

Include Nonstationary Random Processes ,” Automation and

‘Remote Control, vol. 20, pp. 1049-1062, August 1359.

¥

11. ZE. B. Stear, "Shaping Filters for Stochastic Processes ,"

Modern Control Systems Theory, C. T. Leondes, ed., New York:

McGraw—Hill, 1965, pp. 121-155.

12. R. P. Webb, J. L. Hammond, Jr., R. E. Bryan and T. M. White, Jr.,
"Generation and Measurement of Nonstationary Random Processes "
Engineering Experiment Station, Technical Note 3, Project No. A-388,
Georgia Institute of Technology, Atlanta Georgia, July 1964.

13. R. E. Kalman, "Linear Stochastic Filtering Theory - Reappraisal

"and Outlook ," Proc. Symposium on System Theory, Polytechnic

"Inst. of Brooklyn, N.Y., pp. 197-205, 1965.
14. B. D. O. Anderson, "Timé—Varying Spectral Factorization,”

Systems Thecry Laboratory Technical Repcrt No. 6560-8,

. Stanford University, October 1966.
15. |L. M. Silverman and H. E. Meadows, "Equivalence and Synthesis

of Time-Variable Linear Systems,® Proc. Fourth Allerton

i _ o
'Conference on Circuit and System Theory, Univ. of Illinois,

pp. 776-784, 1966.

16. J. L. Doob, Stochastic Processes, New York: J. Wiley, 1853.

"17. M. Loeve, Probability Theory, Princeton, N.J. : D. Van

Nostrand, 1955.




'

18.

19.

20.

21.

33

E. A. Coddington and N. Levinson, Theory of Ordinary Difierential

Equations, New York: MecGraw-Hill, 1955.

L. H. Brandenberg, Snaping Filter Models for Nonstationary

Random Processes, Doctoral Dissertation, Columbia University,

N.Y., 1968; also Systems Research Group Technical Report
No. 104, Department of Electrical Engineering, Columbia
University, June 1968.

R. S. Bucy, "Global Theory of the Riccati Equation ," J. Computer

and System Sciencaes, vol. 1, pp. 349-361, 1967.

J. B. Moore and B. D. O. Anderson, "Extensions of Quadratic

-Minimization -Theory —I. Finite Time Results, II. Infinite

Time Results,” Int. J. Control, vol. 7, pp. 465-472, 1968,

=2

L. H. Brandenburg &nd H. E. Meadows, "Generation and Descrip-

tion of a Class of Random Processes," Proc. First Asilomar

Conference on Circuits and Systems, pp. 971-979, November 1967.




A | ' | N
In Ms(t) . , - _ o
REGION OF SOLUTIONS
HAVING FINITE

ESCAPE TIME

REGION OF SOLUTIONS
ASYMPTOTICALLY

F STABLE IN THE SENSE
OF LIAPUNOV

Fig. 1. Illustrating behavior of solutions of
equation (22) for various initial values of
MS(O). Solutions Msl(t) and MSQ(t) correspond

to time-invariant shaping filters.
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